## 2021 Annual Drinking Water Quality Report

| UNREGULATED CONTAMINANTS (CONT.) |                                   |                                              |                                              |                                      |       |  |  |  |  |
|----------------------------------|-----------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------|-------|--|--|--|--|
| UNREGULATED<br>CONTAMINANTS      | COH<br>Avg<br>(Range)<br>Date     | LESSALT<br>Avg<br>(Range)<br>Date            | SSCWD<br>Avg<br>(Range)<br>Date              | WEST HILLS<br>Avg<br>(Range)<br>Date | UNITS |  |  |  |  |
| Monobromoacetic acid             | 1<br>(ND - 1.9)<br>11/21/18       | N/A                                          | .6<br>(.3193)<br>12/3/18                     | N/A                                  | PPB   |  |  |  |  |
| Tribromoacetic acid              | 1.4<br>(0 - 3.7)<br>11/21/18      | N/A                                          | 3.03<br>( <mrl -="" 5.3)<br="">12/3/18</mrl> | N/A                                  | PPB   |  |  |  |  |
| SOURCE WATER                     |                                   |                                              |                                              |                                      |       |  |  |  |  |
| Bromide                          | 260.1<br>(74.5 - 441)<br>11/21/18 | 220<br>(130 - 320)<br>12/26/18               | 282<br>(240 - 310)<br>6/4/18                 | 240<br>(130 - 320)<br>12/26/18       | PPB   |  |  |  |  |
| Germanium                        | .3<br>(.33)<br>11/21/18           | ND                                           | .03<br>(ND3)<br>12/3/18                      | ND                                   | PPB   |  |  |  |  |
| Manganese                        | 2.2<br>(.4 - 6.2)<br>11/21/18     | 1.73<br>( <mrl -="" 4.6)<br="">12/3/18</mrl> | 1.76<br>( <mrl -="" 7.9)<br="">12/3/18</mrl> | 2.6<br>(2 - 3.2)<br>12/3/18          | PPB   |  |  |  |  |
| N-Butyl alcohol                  | sutyl alcohol ND                  |                                              | ND                                           | ND                                   | PPB   |  |  |  |  |

## FREQUENTLY ASKED OUESTIONS

### HOW HARD IS OUR WATER?

Water hardness is due to dissolved minerals such as calcium and magnesium and occurs naturally in water supplies. Though hard or soft water is not clearly defined, typically, levels of dissolved Calcium Carbonate (CaCO3) in water above 100 ppm or 6 grains per gallon, is considered hard and can cause scale to build up in pipes, on faucets, and leave white spots on dish ware. Water in the City's distribution system. as of February 22, 2019, has a total hardness average of 149 ppm or ~8 grains per

### WHY DOES MY WATER LOOK YELLOW/BROWN?

The surface water source at times has trace amounts of dissolved Iron and Manganese, which may cause a yellow/brown color in the water, usually most visible in white bathtubs, sinks or toilets. This condition does not constitute a health risk and flushing your water pipes will often remedy the situation. Another source of color can be naturally occurring organic materials.

## WHY DOES MY WATER LOOK CLOUDY OR MILKY?

Cloudy or milky water is usually due to air bubbles in the water. Distribution pipes carry water under pressure, which keeps air dissolved in the water. These bubbles initially make a glass of water appear cloudy, but will slowly rise and the water turns

## WHY DOES MY DRINKING WATER TASTE OR SMELL FUNNY?

Taste comes from the minerals dissolved in the water. The two most common reasons for poor tasting or smelling water are:

- · Chlorine odor or taste is normally a result of the chlorine required to disinfect the water supply. If the smell is particularly strong, leave the water in an open container for the chlorine to dissipate. A residential carbon filter element can
- A rotten-egg odor in water is caused by hydrogen sulfide, (non-toxic in small amounts), dissolved in the water and usually coming from the hot water faucet. A remedy is to slightly turn up the temperature in your water heater. Periodic draining of the water heater is recommended, and may help. Also, if you let the water flush for a few seconds, the smell may disappear.

## WATER CONSERVATION SCHEDULE



## **EVEN**

**ADDRESS ENDING IN 0, 2, 4, 6, 8 CAN WATER ON WEDNESDAY AND SUNDAY** 

## ODD

ADDRESS ENDING IN 1, 3, 5, 7, 9 **CAN WATER ON TUESDAY AND SATURDAY** 

WATERING HOURS ARE BEFORE 9AM OR AFTER 5PM NO WATERING MONDAY, THURSDAY OR FRIDAY.

## WATER SAVING TIPS

California is currently suffering from an intense drought. In order to help conserve water Governor Gavin Newsom has issued an emergency proclamation to state agencies and water consumers, to save water. Below are some quick tips and sources to help us conserve.

## **OUTDOOR CONSERVATION**

- Water lawns between 9 p.m. and 6 a.m. to reduce evaporation.
- Install irrigation timers to avoid over-watering. San Benito County Water District provides free assistance in setting irrigation timer schedules to best suit your landscape.
- Eliminate water runoff onto sidewalks.
- Clean outdoor patios and decks with a broom rather than a hose
- Change landscaping to low-water use or native plants.
- Cover your pool to reduce evaporation

Please contact San Benito County Water District for more assistance and other tips at (831) 637-4378 or by email at snovack@sbcwd.com

## **SPILL RESPONSE AGENCIES**

For additional information on water conservation, please contact the following agencies:

## City of Hollister **Community Services**

(831) 636-4370

(831) 637-8218

District

San Benito County Water

www.hollister.ca.gov

www.sbcwd.com

Please contact our stormwater hotline 1 (800) 78-CRIME if you see anyone dumping into the stormwater drains

## IS FLUORIDE ADDED TO OUR DRINKING WATER?

No, fluoride is not added to the City's water supply. However, it does occur naturally.

RAMON BECERRA

WATER OPERATOR I

CALER ALLEMAN

JULIAN CAMARILLO

CITY OF HOLLISTER WATER DEPARTMENT HENRY GONZALES SERVICES DIRECTOR

MICHAEL GRZAN

SUMMER GARCIA

TRENNA BURBANK

**RODRIGO AGUILAR** 

UTILITY SUPERVISOR

PROGRAMS MANAGER

ISAIAH HERNANDEZ

JORGE TORRES WATER OPERATOR II

MEILIN DELGADO

HYDIE McDONALD

For more information on this report please call Michael Grzan at (831)636-4377 or email at Michael.Grzan@Hollister.ca.gov.

Para una traducción al español de este informe, por favor llame al (831)636-4370 o por correo electrónico Michael.Grzan@Hollister.ca.gov

## PUBLIC PARTICIPATION

The City Council normally meets the 1st and 3rd Monday of each month beginning at 6:30 p.m. in the City Council Chambers at 375 Fifth Street, Hollister.

Area water issues are discussed, and the public is also welcome at the Water Resource Association of San Benito County, which also meets at City Hall, 375 Fifth Street, on the first Thursday of most months at 7:00p.m. (see the WRA website at http://www.wrasbc.org)



# CITY OF HOLLISTER

## 2021 Annual Drinking Water Quality Report

Este informe contiene información muy importante sobre su agua potable, lea el segundo pàrrafo. Para información en español llame al (831) 636-4370

## **REPORT SUMMARY**

The City of Hollister (City) is pleased to present this year's Annual Drinking Water Quality Consumer Confidence Report. The purpose of this report is to increase your understanding and confidence in the quality of drinking water delivered to you by the City of Hollister Water System. Included are details about where your water comes from, what it contains, and how it compares to State standards. Our constant goal is to give you a safe and reliable drinking water supply

Please note that tenants, employees and students may not receive this report since they are not direct customers of the City. Please make this report available to such people by distributing copies or posting in a conspicuous location. This report is also available on-line at

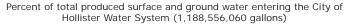
http://hollister.ca.gov/government/city-departments/community-services/

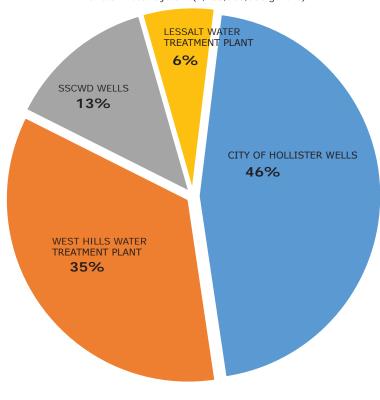
## **HEALTH INFORMATION**

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections.

These people should seek advice about drinking water from their health care providers. U S Environmental Protection Agency and Center for Disease Control guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). www.epa.gov/safewater/hfacts. html and California Department of Health Services web site www.dhs.ca.gov/ ps/ddwem/default.htm

Contaminants that may be present in source water include:


- · Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife
- · Inorganics, such as salts and metals, that can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming
- · Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- · Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- · Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities


Water quality monitoring information for all sources to the City of Hollister Water System is available in tables shown in the various sections of this report. Additional water quality data is provided for regular monitoring performed in 2020, throughout some 112 miles of water distribution system.

## WATER SOURCES

During 2021, the City of Hollister obtained 46% of its potable drinking water from its five active deep groundwater wells located throughout the City and Cienega Valley, 6% from surface water, treated at the Lessalt Water Treatment Plant, 6% of groundwater from the Sunnyslope County Water District (SSCWD) wells through a series of distribution system inter-ties, and 35% from the West Hills Water Treatment Plant.

## 2021 CITY OF HOLLISTER WATER SOURCES





## **WATER QUALITY**

The City regularly collects and tests water samples from designated sampling points throughout our water distribution system to ensure the water delivered to you meets or exceeds federal and state drinking water standards. In addition to our extensive treatment process control monitoring, from January 1st to December 31st, 2021 the City has conducted 388 tests for contaminants. Only 18 of these contaminants were detected, and of those only one was found at a level higher than the State allows.

This exceedance occurred at an isolated location at the City Airport. As required by State regulations, all customers were notified of the matter and the City expeditiously began corrective protocol to ensure the safety of your drinking water all customers were notified of the matter. For more information, see the paragraph marked Compliance Information further in this report.

However, drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. So, In order to ensure that tap water is safe to drink, the USEPA and SWRCB-DDW prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. SWRCB-DDW regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

## KEY WATER QUALITY TERMS

following are definitions of key terms referring to standards and goals of vater quality noted on the adjacent data table.

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are to monitor and control the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

**Public Health Goal (PHG)** - The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Primary Drinking Water Standard (PDWS) - MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standard (SDWS) - Secondary MCLs do not have PHGs or MCLGs because secondary MCLs are set to protect the aesthetics of water and PHGs and MCLGs are based on health concerns.

## MONITORING COMPLIANCE INFORMATION

Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

## DRINKING WATER SOURCE ASSESSMENT

Groundwater: An assessment of the City of Hollister Groundwater

Well Sources (Hollister Wells #1 through #6 and Cullum #1 and #2) was completed in February 2006. Summaries of the results may be viewed at the locations presented further in this section. Currently, three wells are out of service indefinitely. These sources are considered most vulnerable to the following activities not associated with any detected contaminants: Agricultural, residential and municipal activities, septic and sewer collection systems, farm machinery, gas stations, chemical/petroleum processing/storage, utility stations- maintenance areas, dry cleaners, parking lots, and malls.

LESSALT Surface Water Treatment Plant: An assessment of the LESSALT Water Treatment Plant Surface Water Source was completed in March 2009. This source is considered most vulnerable to the following activities not associated with any detected contaminants: Recreational Area, Government Agency Equipment Storage, Road, Streets, Septic Systems, Sewer Collection Systems, Grazing Animals, Farm Machinery, Wells and Irrigation.

West Hills Surface Water Treatment Plant: In 2017 the City of Hollister, in partnership with Sunnyslope County Water District and San Benito County Water District, began sending to residents better quality water from the brand new West Hills Surface Water Treatment Plan. An assessment of this source was completed in April 2014. This source is most vulnerable to the following activities not associated with any detected contaminates: Recreational Area, Government Agency Equipment Storage, Road, Streets, Septic Systems, Sewer Collection Systems, Grazing Animals, Farm Machinery, Wells and Irrigation.

Copies of the <u>summaries</u> of the completed assessments may be viewed or obtained at:

SECONDARY REGULATED

CONTAMINANTS

Iron

Manganese

Avg (Range) Date

1/7/2021

1/7/2021

21.33 (ND - 190)

ND

State Water Resources Control Board Division of Drinking Water Monterey District Office 1 Lower Ragsdale Dr. Bldg 100, Ste 120 Monterey, CA 93940 Phone: 831-655-6939

or

Utilities Division 1321 South St Phone: 831-636-4377

City of Hollister

## 2021 HOLLISTER DRINKING WATER QUALITY DATA

The table below lists all 2021 (January 1st - December 31st, 2021), unless noted otherwise, detected drinking water contaminants and the information about their typical sources. Contaminants below detection limits for reporting are not shown, in accord with regulatory guidance. The State allows us to monitor for some contaminants less than once per year because the concentrations do not change frequently. Some of our data, while representative, are more than one year old.

|                                   |                                     |                                   |                                   |                                      |         |                      |                    | nce. The State allows us to monitor for some<br>nile representative, are more than one year old.                                                                      | CENE           |  |
|-----------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|---------|----------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| *NOTE: The results for            |                                     |                                   |                                   |                                      | ,       | ,                    |                    |                                                                                                                                                                       | GENE           |  |
|                                   |                                     |                                   |                                   | DISTRIBUTI                           | ON SYST | ЕМ                   |                    |                                                                                                                                                                       | Cilioi         |  |
| PRIMARY REGULATED CONTAMINANTS    | UNIT                                | MCL                               | PHG (MCLG)                        | RANGE                                | ≣       | AVERAGE<br>OR [MAX]  | VIOLATIO           | ON MAJOR SOURCES OF CONTAMINANT                                                                                                                                       |                |  |
| MICROBIOLOGICAL CONTAM            | INANTS                              |                                   |                                   |                                      |         |                      |                    |                                                                                                                                                                       | Color          |  |
| Total Coliform Bacteria           | -                                   | 1                                 | 0                                 | (0)                                  |         | 0                    | NO                 | Naturally present in the environment                                                                                                                                  | Specifi        |  |
| Fecal Coliform or E. coli         | -                                   | 1                                 | 0                                 | (0)                                  |         | 0                    | NO                 | Human and animal fecal waste                                                                                                                                          | Cond<br>(EC)   |  |
| Turbidity                         | NTU                                 | 5                                 | 5                                 | (ND - 1.                             | 1)      | 0.16                 | NO                 | Soil runoff                                                                                                                                                           |                |  |
| DISINFECTION BY-PRODUCT           | S                                   |                                   |                                   |                                      |         |                      |                    |                                                                                                                                                                       | Sulfa          |  |
| TTHM                              | PPB                                 | 80                                | N/A                               | (7 - 66                              | )       | 47*                  | YES                | Byproduct of drinking water disinfection                                                                                                                              | Julia          |  |
| HAA5                              | PPB                                 | 60                                | N/A                               | (0 - 26                              | )       | 12*                  | NO                 | Byproduct of drinking water disinfection                                                                                                                              |                |  |
| Chlorine                          | PPM                                 | 4                                 | N/A                               | (0 - 3)                              | )       | 1.22                 | NO                 | Drinking water disinfectant added for treatment                                                                                                                       | Total<br>Solid |  |
| LEAD AND COPPER                   | UNITS                               | AL                                | PHG                               | No. of Si                            | tes     | No. of Sites over AL | 90th<br>Percentile | MAJOR SOURCES OF CONTAMINANT                                                                                                                                          |                |  |
| Copper (8-3-20)                   | PPM                                 | 1.3                               | 0.17                              | 31                                   |         | 0                    | 0.73               | Internal corrosion of household water plumbing systems                                                                                                                | Turbi          |  |
| Lead (8-3-20)                     | PPB                                 | 15                                | N/A                               | 31                                   |         | 0                    | 1.3                | Internal corrosion of household water plumbing systems                                                                                                                |                |  |
|                                   |                                     |                                   |                                   | SOURCE                               | WATER   | 1,                   |                    |                                                                                                                                                                       |                |  |
| PRIMARY REGULATED<br>CONTAMINANTS | COH WELLS<br>Avg<br>(Range)<br>Date | LESSALT<br>Avg<br>(Range)<br>Date | SSCWD<br>Avg<br>(Range)<br>Date   | WEST HILLS<br>Avg<br>(Range)<br>Date | UNITS   | MCL                  | PHG<br>(MCLG)      | MAJOR SOURCES OF CONTAMINANT                                                                                                                                          | CONT           |  |
| RADIOACTIVE CONTAMINAN            | гѕ                                  |                                   |                                   |                                      |         |                      |                    |                                                                                                                                                                       | Bicar          |  |
| Gross Alpha                       | 1.59<br>(1.38 - 1.79)<br>3/4/21     | 2.03<br>1/30/20                   | 4.91<br>(5.7 - 8.11)<br>1/9/20    | 1.67<br>1/30/20                      | pCi/L   | 15                   | 0                  | Erosion of natural deposits                                                                                                                                           | Boron          |  |
| Radium 228                        | 0.07<br>(ND - 0.22)<br>1/14/19      | 0.290<br>1/30/20                  | 0.01<br>1/10/19                   | 0.052<br>1/30/20                     | pCi/L   | 5                    | 0.019              | Erosion of natural deposits                                                                                                                                           | Calciu         |  |
| Radium 226                        | 0.04<br>(ND - 0.12)<br>1/14/19      | 0.085<br>1/30/20                  | 0.67<br>1/10/19                   | 0.204<br>1/30/20                     | pCi/L   | 5                    | 0.019              | Erosion of natural deposits                                                                                                                                           | Hardı          |  |
| Uranium                           | 3.55<br>(1.33 - 9)<br>12/5/07       | N/A                               | 3.3<br>(3.3)<br>12/27/2021        | N/A                                  | pCi/L   | 20                   | 0.43               | Erosion of natural deposits                                                                                                                                           | Magn           |  |
| Strontium-90                      | N/A                                 | N/A                               | 0.09<br>(ND - 0.75)<br>4/6/11     | N/A                                  | pCi/L   | 8                    | 0.35               | Decay of natural and man-made deposits                                                                                                                                |                |  |
| INORGANIC CONTAMINANTS            |                                     |                                   |                                   |                                      |         |                      |                    |                                                                                                                                                                       |                |  |
| Aluminum                          | ND                                  | ND                                | ND                                | ND                                   | PPM     | 1                    | 0.6                | Erosion of natural deposits                                                                                                                                           | рН             |  |
| Arsenic                           | 1.58<br>(ND - 3.1)<br>6/3/20        | 2.9<br>1/7/2021                   | 2.1<br>(ND - 2.1)<br>4/15/20      | 2.4<br>1/7/21                        | PPB     | 10                   | 0.004              | Erosion of natural deposits; runoff from orchards; glass and electronics production wastes.                                                                           | Sodiu          |  |
| Copper                            | 14.5<br>(ND - 87)<br>9/16/15        | N/A                               | N/A                               | N/A                                  | PPB     | 1.3                  | 0.3                | Leaching from natural deposits                                                                                                                                        | Total<br>as Ca |  |
| Chromium, Total                   | 5.4<br>(ND - 14)<br>6/3/20          | ND                                | 7.2<br>(ND - 13)<br>4/6/17        | ND                                   | PPB     | 50                   | 100                | Discharge from steel and pulp mills and chrome plating; erosion of natural deposits                                                                                   |                |  |
| Nitrate as N                      | 3.62<br>(1.8 - 7)<br>12/16/21       | ND                                | 2.35<br>(1.3 – 3.7)<br>7/13/2021  | ND                                   | PPM     | 10                   | 10                 | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits                                                           | UNR            |  |
| Selenium                          | 1.06<br>(ND - 4.9)<br>12/5/19       | ND                                | 1.22<br>(ND - 6.1)<br>4/15/20     | ND                                   | PPB     | 50                   | 30                 | Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed |                |  |
| Fluoride                          | 0.28<br>(ND - 0.41)<br>6/3/20       | ND                                | 0.244<br>(0.18 - 0.35)<br>4/15/20 | ND                                   | PPM     | 2                    | 1                  | additive)  Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories                                   | Brom           |  |
|                                   | COH WELLS                           | LESSALT                           | SSCWD                             | WEST HILLS                           |         |                      |                    |                                                                                                                                                                       | Chlor          |  |

Avg (Range) Date

1/7/2021

(60-180)

9/27/2021

(ND-0.14)

ND

UNITS

PPB

PPB

300

50

MAJOR SOURCES OF CONTAMINANT

Leaching from natural deposits; industrial wastes

Leaching from natural deposits

| SOURCE WATER (CONT.)                   |                                     |                                   |                                   |                                             |                   |                                                                                                                            |                                          |  |  |
|----------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|---------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|
| SECONDARY<br>REGULATED<br>CONTAMINANTS | COH WELLS<br>Avg<br>(Range)<br>Date | LESSALT<br>Avg<br>(Range)<br>Date | SSCWD<br>Avg<br>(Range)<br>Date   | WEST HILLS<br>Avg<br>(Range)<br>Date        | UNITS             | MCL                                                                                                                        | MAJOR<br>SOURCES OF<br>CONTAMINAN        |  |  |
| GENERAL MINERA                         | L AND PHYSICA                       |                                   |                                   |                                             |                   |                                                                                                                            |                                          |  |  |
| Chloride                               | 78.33<br>(25 - 130)<br>10/7/21      | 74<br>1/7/2021                    | 123.4<br>(97-150)<br>1/9/20       | 75<br>1/7/2021                              | PPM               | Runoff/leach<br>N/A from natura<br>deposits                                                                                |                                          |  |  |
| Color                                  | .67<br>(ND - 10)<br>10/7/21         | 20 UW<br>1/30/20                  | 6<br>(5 - 10)<br>1/9/20           | 15 UW<br>1/30/20                            | UNITS             | Naturally-<br>occurring<br>organic<br>materials                                                                            |                                          |  |  |
| Specific<br>Conductance<br>(EC)        | 942.67<br>(280 - 1500)<br>10/7/21   | 520<br>(480 - 560)<br>7/20/2021   | 1360<br>(1300 - 14)<br>7/13/2021  | 505<br>(460 - 550)<br>7/20/2021             | um-<br>hos/<br>cm | 1600                                                                                                                       | Substances that form ions when in water; |  |  |
| Sulfate as SO4                         | 170.47<br>(23 - 310)<br>10/7/21     | 33<br>1/7/20                      | 226<br>(190-260)<br>1/9/20        | 33<br>1/7/21                                | PPM               | Runoff/leac<br>from natura<br>500 deposits;<br>industrial<br>wastes                                                        |                                          |  |  |
| Total Dissolved<br>Solids              | 639.33<br>(190 - 1100)<br>10/7/21   | 260<br>1/7/2021                   | 796<br>(750-830)<br>1/9/2021      | 260<br>1/7/2021                             | PPM               | Runoff/leachi<br>1000 from natural<br>deposits                                                                             |                                          |  |  |
| Turbidity                              | .35<br>(ND - 1.7)<br>10/7/21        | 1.5 TW<br>1/7/21                  | 0.434<br>(0.26-0.82)<br>1/9/20    | 1.2 TW<br>1/7/21                            | NTU               | 5 Soil runoff                                                                                                              |                                          |  |  |
|                                        | Į.                                  | ADDITIONAL W                      | ATER QUALIT                       | YINFORMATIC                                 | N                 |                                                                                                                            | 1                                        |  |  |
| DETECTED<br>CONTAMINANTS               | COH WELLS<br>Avg<br>(Range)<br>Date | LESSALT<br>Avg<br>(Range)<br>Date | SSCWD<br>Avg<br>(Range)<br>Date   | WEST HILLS<br>Avg<br>(Range)<br>Date        | UNITS             |                                                                                                                            | CLE KEY                                  |  |  |
| Bicarbonate                            | 275.5<br>(92 - 410)<br>9/9/21       | 91<br>1/7/21                      | 344<br>(310 - 360)<br>1/9/20      | 83<br>(75 - 92)<br>1/7/2021                 | PPM               | COH - City of Hollister  LRAA - Locational Running Annual Average  N/A - Not Applicable ithis situation  ND - Not Detected |                                          |  |  |
| Boron                                  | .478<br>(ND94)<br>10/6/20           | ND                                | .485<br>(.97 - 1)<br>1/9/20       | ND                                          | PPM               |                                                                                                                            |                                          |  |  |
| Calcium                                | 54.67<br>(31 - 76)<br>10/7/21       | 20<br>1/7/21                      | 66<br>(60 - 69)<br>4/15/20        | 20<br>1/7/21                                | PPM               |                                                                                                                            |                                          |  |  |
| Hardness, Total                        | 357.2<br>(103 - 581)<br>10/7/21     | 95<br>1/7/21                      | 403<br>(370 - 430)<br>1/9/20      | 100<br>1/7/21                               | PPM               | NTU - Nephelometric<br>Turbidity Unit                                                                                      |                                          |  |  |
| Magnesium                              | 53.53<br>(6.1 - 95)<br>10/7/21      | 11<br>1/7/21                      | 60<br>(55 - 68)<br>1/9/20         | 12<br>1/7/21                                | PPM               | <pre>pCi/L - Picocuries per<br/>liter (a measure of<br/>radioactivity)</pre>                                               |                                          |  |  |
| Odor                                   | .09<br>(ND - 1.3)<br>10/7/21        | N/A                               | N/A                               | N/A                                         | TON               | PPB - Parts Per Billion PPM - Parts Per Million                                                                            |                                          |  |  |
| рН                                     | 7.5<br>(6.87 - 7.98)<br>10/7/21     | 7.9<br>(6.4 - 8.5)<br>1/7/2021    | 8.02<br>(8 - 8.1)<br>1/9/20       | 7.8<br>(6.4 - 8.5)<br>1/7/2021              | pH<br>Units       | RAA - Running Annual<br>Average                                                                                            |                                          |  |  |
| Sodium                                 | 92.33<br>(18 - 170)<br>10/7/21      | 49<br>1/7/21                      | 128<br>(120 - 140)<br>1/9/20      | 50<br>1/7/21                                | PPM               | SSCWD - Sunnyslope<br>County Water District<br>TW - Untreated Water                                                        |                                          |  |  |
| Total Alkalinity<br>as CaCO3           | 230.38<br>(65 - 350)<br>12/16/21    | 75<br>1/7/21                      | 284<br>(250 - 300)<br>1/9/20      | 75<br>1/7/21                                | PPM               | <b>UW</b> - Untreated Water                                                                                                |                                          |  |  |
|                                        |                                     | DIST                              | RIBUTION SY                       | STEM                                        |                   |                                                                                                                            |                                          |  |  |
| UNREGULATED CONTAMINANTS               |                                     | COH<br>Avg<br>(Range)<br>Date     | LESSALT<br>Avg<br>(Range)<br>Date | SSCWD<br>Avg<br>(Range)<br>Date             | Av<br>(Ran        | WEST HILLS<br>Avg<br>(Range)<br>Date                                                                                       |                                          |  |  |
| Bromochloroacetic acid                 |                                     | 3.7<br>(1.8 - 6.9)<br>11/21/18    | N/A                               | 2.09<br>(.94 - 3)<br>12/3/18                | N/A PPB           |                                                                                                                            | PPB                                      |  |  |
| Bromodichloroacetic acid               |                                     | .4<br>(ND - 1.2)<br>11/21/18      | N/A                               | .94<br>( <mrl -="" 1.5)<br="">12/3/18</mrl> | N/                | N/A PPB                                                                                                                    |                                          |  |  |
| Chlorodibromoacetic acid               |                                     | 1.9<br>(1 - 3.4)<br>11/21/18      | N/A                               | 2.24<br>(.82 - 3.1)<br>12/3/18              | N/                | N/A PPB                                                                                                                    |                                          |  |  |
| Dibromoacetic acid                     |                                     | 10.2<br>(5.6 - 19)<br>11/21/18    | N/A                               | 15.4<br>(2.2 - 48)<br>12/3/18               | N/                | N/A PPB                                                                                                                    |                                          |  |  |
| Dichloroacetic acid                    |                                     | 1.3<br>(.7 - 2.7)<br>11/21/18     | N/A                               | .59<br>(.26 - 1)<br>12/3/18                 | N/                | N/A PPB                                                                                                                    |                                          |  |  |
|                                        |                                     |                                   |                                   |                                             |                   |                                                                                                                            |                                          |  |  |